Topological Geometry is the rich field of mathematics that exists in many branches of engineering sciences in addition; it is used in various real-life applications. In this paper, we concentrate on the application of M¨obius surface as a new model of Geometrical Topological Structure (GTS). The M¨obius strip, since its discovery, has captured the imaginations of mathematicians and engineers everywhere, and it continues to fascinate modern generations with its non-orientability properly and one-sidedness.The concept of the M¨obius Band also appears to be used in many fields such as M¨obius House. The Geometrical Topological structures of the M¨obius surface has great potential as an architectural forms that is difficult to visualize and investigate without the aid of digital technologies. The M¨obius strip, since its discovery, has captured the imaginations of mathematicians and engineers everywhere, and it continues to fascinate modern generations with its non-orientability properly and one-sidedness. Also, we show that there exists some models from rubber sheet geometry that can be applied to design processes.
Sobhy, I. (2023). Rubber Sheet Geometry in Design Process. Journal of Contemporary Technology and Applied Engineering, 2(2), 6-11. doi: 10.21608/jctae.2023.243019.1018
MLA
Ismail Sobhy. "Rubber Sheet Geometry in Design Process". Journal of Contemporary Technology and Applied Engineering, 2, 2, 2023, 6-11. doi: 10.21608/jctae.2023.243019.1018
HARVARD
Sobhy, I. (2023). 'Rubber Sheet Geometry in Design Process', Journal of Contemporary Technology and Applied Engineering, 2(2), pp. 6-11. doi: 10.21608/jctae.2023.243019.1018
VANCOUVER
Sobhy, I. Rubber Sheet Geometry in Design Process. Journal of Contemporary Technology and Applied Engineering, 2023; 2(2): 6-11. doi: 10.21608/jctae.2023.243019.1018