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ABSTRACT. In this paper, we introduce a novel two-level iterative approach for Nyström's method, designed 

for the efficient solution of large equation systems resulting from the discretization of Fredholm integral 

equations of the second kind. The developed two-level algorithm exhibits a computational cost advantage, 

demonstrating faster convergence than the Atkinson-Brakhage iterative method and providing convergence 

for a wider range of parameters, thus enhancing its stability and accuracy. Moreover, a derivation of the 

convergence of this new method is presented, providing a theoretical foundation for its use and guaranteeing 

its mathematical soundness. Illustrative numerical examples are included to showcase the method's 

effectiveness and its superior performance in comparison to existing methods. The practical efficacy of the 

algorithm is demonstrated through a detailed comparative analysis with the Atkinson-Brakhage method, with 

a focus on its improved computational efficiency, broader applicability, and reduced sensitivity to parameter 

selection. This new method leverages a two-stage iterative process where the first level provides a good initial 

guess for the second, leading to accelerated convergence. The analysis features a rigorous scrutiny of the 

spectral attributes of the iteration matrix, aiming to establish the wider convergence range. The results indicate 

that this two-level approach provides a significant advancement in the numerical solution of Fredholm 

integral equations. 

KEYWORDS: Nyström's method; Two-level iteration; Fredholm integral equations of the second kind; 
Atkinson-Brakhage iteration; Convergence analysis.  

 

1. INTRODUCTION 

 Direct methods employed to solve linear integral 
equations of the second kind (see, for instance, [1]) all 
result in systems of linear equations. These systems, 
when of limited size, can be solved using Gaussian 
elimination. However, for larger linear systems, 
iterative methods are generally more efficient and 
frequently the only feasible approach to finding a 
solution. So, there are many papers concerned with 
the iterative solution of integral equation, see for 
example ([2]-[5]). 

 This paper introduces a new two-level iteration 
of Nyström's method to efficiently solve large systems 
of equations that result from discretizing Fredholm 
integral equations of the second kind. The proposed 
two-level algorithm is roughly half the cost of the 
Atkinson-Brakhage iteration and demonstrates 
convergence across a wider parameter range. 
Furthermore, the convergence of this new method is 
derived. 

  The Atkinson-Brakhage algorithm for integral 
equations ([6]-[9]) is reviewed initially. The core 

principles of this algorithm are clearly shown through 
an analysis of the linear equation on 𝐶(𝐷), 

𝜆𝑥 (𝑡) =  (Κ𝑥)(𝑡) +  𝑦 (𝑡) 

= ∫ 𝑘 (𝑡, 𝑠)𝑥 (𝑠)𝑑𝑠

 

𝐷

  +  𝑦 (𝑡);  𝑡 𝜖 𝐷       (1) 

 The Atkinson-Brakhage algorithm addresses 
equation (1), where k and y are continuous functions, 
and the goal is to determine 𝑥𝜖𝐶(𝐷). We assume (𝜆 −
𝛫) is a nonsingular map on 𝐶(𝐷) for the linear 
integral operator in (1). The algorithm employs a 
quadrature rule sequence, with index 𝑛, nodal points 

{𝑡𝑛,𝑗}
𝑗=1

𝑃𝑛
 and weights  {𝑤𝑛,𝑗}

𝑗=1

𝑃𝑛
.  

∫ 𝑔(𝑡)𝑑𝑡

 

𝐷

≈ ∑ 𝑤𝑛,𝑗

𝑃𝑛

𝑗=0

𝑔(𝑡𝑛,𝑗),   𝑛 ≥ 1              (2) 

 If (2) is convergent for all 𝑔 ∈ 𝐶(𝐷) ; define the 
numerical integration operator 

Κ𝑛𝑥 = ∑ 𝑤𝑛,𝑗

𝑃𝑛

𝑗=0

𝑘(𝑡, 𝑡𝑛,𝑗) 𝑥(𝑡𝑛,𝑗), 𝑡𝜖𝐷 
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for 𝑥 ∈ 𝐶(𝐷) and 𝑛 ≥ 1  . 

 The Nyström approximation to (𝜆 − Κ)𝑥 = 𝑦 is 

𝜆 𝑥𝑁(𝑡) − ∑ 𝑤𝑁,𝑗

𝑃𝑁

𝑗=0

𝑘(𝑡, 𝑡𝑁,𝑗) 𝑥𝑁(𝑡𝑁,𝑗) = 𝑦(𝑡), 

  𝑡𝜖𝐷                                    (3) 

 This is denoted abstractly by: 

(𝜆 − Κ𝑁)𝑥𝑁 = 𝑦                      (4) 

 To solve Equation (3), the first step is to solve the 
finite-dimensional system. 

𝜆 𝑥𝑁(𝑡𝑁,𝑖) − ∑ 𝑤𝑁,𝑗

𝑃𝑁

𝑗=0

𝑘(𝑡𝑁,𝑖 , 𝑡𝑁,𝑗) 𝑥𝑁(𝑡𝑁,𝑗) = 𝑦(𝑡𝑁,𝑖),   𝑖

= 1, 𝑃𝑁                                (5)  

 to determine the solution values at the nodal 
points, and then, using the Nyström interpolation 
formula, to reconstruct the values of  𝑥𝑁 at any  𝑥𝑁𝜖𝐷. 

 𝑥𝑁(𝑡) =
1

𝜆
 ∑ 𝑤𝑁,𝑗

𝑃𝑁

𝑗=0

𝑘(𝑡, 𝑡𝑁,𝑗) 𝑥𝑁(𝑡𝑁,𝑗) +
1

𝜆
 𝑦(𝑡),

𝑡𝜖𝐷. 

 Let 𝑥𝑁
(0)

 constitutes a preliminary approximation 
of the solution  𝑥𝑁 for (5); the Atkinson-Brakhage 
technique is characterized by ([9]-[11]).  

𝑥𝑁
(𝑞+1)

= 𝑥𝑁
(𝑞)

+
1

𝜆
 (𝛿𝑁

(𝑞)
+ 𝑟(𝑞))               (6) 

where  

𝑟(𝑞) = 𝑦 − (𝜆 − Κ𝑁)𝑥𝑁
(𝑞)

,                            (7) 

𝛿𝑁
(𝑞)

= (𝜆 − 𝛫𝑛)−1 𝛫𝑁𝑟(𝑞),                          (8) 

 𝑁 ≫ 𝑛; in which 𝑁 is commonly designated as 
the fine mesh or fine level, while 𝑛 is designated as 
the coarse mesh or level.  

 This definition reveals that each iteration 

necessitates two calculations of 𝛫𝑁. Initially, 𝛫𝑁𝑥𝑁
(𝑞)

 is 
calculated to determine the residual 𝑟(𝑞). 
Subsequently, 𝛫𝑁𝑟(𝑞) is computed. The method 
proposed here substitutes the second calculation of 
𝛫𝑁 with a calculation of 𝛫𝜇, where 𝑛 ≤ 𝜇 ≪ 𝑁. This 
alteration approximately halves the computational 
cost of the proposed technique's algorithm compared 
to the Atkinson-Brakhage iteration and expands the 
range of parameters for which our method achieves 
convergence beyond that of the Atkinson-Brakhage 
method. 

2. MAIN RESULTS 

2.1. THE GENERAL FORM 
 To develop the new iteration method, we will 

utilize the operator realization (4) derived from (3) 

and then examine its implications for solving (5). 

We use (4) because it allows for a straightforward 

application of the collectively compact operator 

theory to demonstrate the method's convergence. A 

philosophy throughout this paper is that we 

iteratively solve (4) by presuming the direct 

solvability of the equation 
𝑧 = (𝜆 − Κ𝑛)𝜔 

for some much smaller parameterization variable 𝑛. 

Rewrite (4) as 
0 = 𝑦 − (𝜆 − Κ𝑁)𝑥𝑁                                      (9) 

Assume 𝑥𝑁
(0)

 represents an initial approximation of 

𝑥𝑁 solution for (3). Establish the residual 

    𝑟(0) = 𝑦 − (𝜆 − Κ𝑁)𝑥𝑁
(0)

 

= (𝜆 − Κ𝑁)((𝜆 − Κ𝑁)−1𝑦 − 𝑥𝑁
(0)

) 

= (𝜆 − Κ𝑁)(𝑥𝑁 − 𝑥𝑁
(0)

)                    

𝑥𝑁 = 𝑥𝑁
(0)

+ (𝜆 − Κ𝑁)−1 𝑟(0) 

   = 𝑥𝑁
(0)

+
1

𝜆
 (𝐼 −

Κ𝑁

𝜆
)

−1

 𝑟(0)   

   = 𝑥𝑁
(0)

+
1

𝜆
(𝐼 +

Κ𝑁

𝜆
+

Κ𝑁
2

𝜆2
+ ⋯ )

 

𝑟(0) 

  = 𝑥𝑁
(0)

+
1

𝜆
(𝐼 + [𝐼 +

Κ𝑁

𝜆
+

Κ𝑁
2

𝜆2
+ ⋯ ]

Κ𝑁

𝜆
)

 

𝑟(0) 

𝑥𝑁 = 𝑥𝑁
(0)

+
1

𝜆
(𝐼 + (𝜆 − Κ𝑁)−1Κ𝑁) 𝑟(0)      (10) 

Then consider the approximation 

𝐼 + (𝜆 − Κ𝑁)−1Κ𝑁 ≈ 𝐼 + (𝜆 − Κ𝑛)−1Κ𝜇 

where  𝑛 ≤ 𝜇 ≪ 𝑁. Using it in (10), define  

𝑥𝑁
(1)

= 𝑥𝑁
(0)

+
1

𝜆
(𝐼 + (𝜆 − Κ𝑛)−1Κ𝜇)

 
𝑟(0) 

Define (𝜆 − Κ𝑛)−1Κ𝜇  𝑟(0) = 𝛿𝑁
(0)

, 

𝑥𝑁
(1)

= 𝑥𝑁
(0)

+
1

𝜆
(𝑟(0) + 𝛿𝑁

(0)
)

 
 

Finally, the generalized iteration is given by 

𝑥𝑁
(𝑞+1)

= 𝑥𝑁
(𝑞)

+
1

𝜆
(𝛿𝑁

(𝑞)
+ 𝑟(𝑞))

 

    (11)

𝑟(𝑞) = 𝑦 − (𝜆 − Κ𝑁)𝑥𝑁
(𝑞)

           (12)

𝛿𝑁
(𝑞)

= (𝜆 − Κ𝑛)−1 Κ𝜇  𝑟(𝑞)          (13)

 

where 𝑞 ≥ 0, and 𝑥𝑁
(0)

 is properly selected. 

2.2. CONVERGENCE 
 Here we prove the convergence of the 

proposed method. In the foregoing analysis we 

need the following assumptions [2] 

(A1) Κ and Κ𝑛,  𝑛 ≥ 1; are linear operator 𝐶(𝐷) →

𝐶(𝐷). 

(A2) ‖(𝐾𝑛 − 𝐾)𝑔‖ → 0 𝑎𝑠 𝑛 → ∞, ∀𝑔 ∈ 𝐶(𝐷). 

(A3) The operators’ family {𝐾𝑛} is collectively 

compact exhibits collective compactness; that is, the 

set 

 Ψ = {𝐾𝑛 𝑔: 𝑛 ≥ 1 𝑎𝑛𝑑  ‖𝑔‖ ≤ 1}  possesses a 

compact closure within 𝐶(𝐷): 

 

LEMMA 1 From the assumptions (A1)-(A3) follows: 

(i) 𝐾 is necessarily compact. 

(ii) The sequence {𝐾𝑛 } demonstrates uniform 
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boundedness; in other words, 
𝐶1 = sup

𝑛≥1
‖𝐾𝑛‖ < ∞. 

(iii) If (𝜆 − 𝐾)−1 exists, then for all n large enough, 

specifically for 𝑛 ≥ 𝑁(𝜆), (𝜆 − 𝛫𝑛 )−1 also exists and 

its norm is bounded by 𝐶2(𝜆), 
𝐶2(𝜆) = sup

𝑛≥𝑁(𝜆)
‖(𝜆 − 𝐾𝑛)−1‖. 

(iv) ‖(𝐾 − 𝐾𝑛)𝐾𝑛‖ and ‖(𝐾 − 𝐾𝑛)𝐾‖ converge to 

zero as 𝑛 → ∞. 

(v)  𝛼𝑛 = sup
 𝑚≥𝑛

sup
 𝜇≥1

‖(𝛫 − 𝛫𝑚)𝛫𝜇‖  → 0 𝑎𝑠 𝑛 → ∞. 

(vi) ‖(𝐾 − 𝐾𝑝)(𝜆 − 𝐾𝑛)−1𝐾𝑞𝑥‖ ≤
𝑎𝑝

|𝜆|
(1 + 𝐶1𝐶2(𝜆)),   

𝑤𝑖𝑡ℎ 𝑝 = 𝜇 𝑜𝑟 𝑁, 𝑞 = 𝜇 𝑜𝑟 𝑁 𝑎𝑛𝑑‖𝑥‖ < 1  

PROOF. see ([9], pp. 96 and 138). 

THEOREM 2 Assume the integral equation (1) is 

uniquely solvable for all 𝑦 ∈ 𝐶(𝐷), also, let 𝑘(𝑡, 𝑠) be 

continuous for 𝑡, 𝑠 ∈ 𝐷. Assume that the numerical 

integration scheme (2) converges for all 𝑔 ∈ 𝐶(𝐷). 

Provided that 𝑛 is adequately large, the iterative 

procedure (12-11) becomes convergent; specifically,  

𝑥𝑁
(𝑞)

→ 𝑥𝑁  𝑎𝑠  𝑞 → ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑁 > 𝜇 ≥ 𝑛. 

PROOF. Using (11), 

𝑥𝑁 − 𝑥𝑁
(𝑞+1)

= 𝑥𝑁 − 𝑥𝑁
(𝑞)

−
1

𝜆
(𝑟(𝑞) + 𝛿𝑁

(𝑞)
)

 

 

= 𝑥𝑁 − 𝑥𝑁
(𝑞)

−
1

𝜆
(𝐼 + (𝜆 − 𝐾𝑛)−1𝐾𝜇)𝑟(𝑞) 

 

  = 𝑥𝑁 − 𝑥𝑁
(𝑞)

−
1

𝜆
(𝜆 − 𝐾𝑛)−1(𝜆 − 𝐾𝑛 + 𝐾𝜇) 𝑟(𝑞) 

 

= 𝑥𝑁 − 𝑥𝑁
(𝑞)

−
1

𝜆
(𝜆 − 𝐾𝑛)−1(𝜆 − 𝐾𝑛 + 𝐾𝜇)

 
 

× (𝜆 − Κ𝑁) (𝑥𝑁 − 𝑥𝑁
(𝑞)

) 

= (𝐼 −
1

𝜆
(𝜆 − 𝐾𝑛)−1(𝜆 − 𝐾𝑛 + 𝐾𝜇)

 
(𝜆 − Κ𝑁)) 

× (𝑥𝑁 − 𝑥𝑁
(𝑞)

) 

=
1

𝜆
(𝜆 − 𝐾𝑛)−1(𝜆(𝜆 − Κ𝑛) 

−(𝜆 − 𝐾𝑛 + 𝐾𝜇)
 
(𝜆 − Κ𝑁)) (𝑥𝑁 − 𝑥𝑁

(𝑞)
) 

 

 

Finally, 

𝑥𝑁 − 𝑥𝑁
(𝑞+1)

=
(𝜆 − 𝐾𝑛)−1

𝜆
((𝐾𝜇 − 𝐾𝑛)𝐾𝑁

+ 𝜆(Κ𝑁 − 𝐾𝜇)) (𝑥𝑁 − 𝑥𝑁
(𝑞)

) 

= (𝑅1 + 𝑅2) (𝑥𝑁 − 𝑥𝑁
(𝑞)

)       (14) 

where  

𝑅1 =
1

𝜆
(𝜆 − 𝐾𝑛)−1 ((𝐾𝜇 − 𝐾𝑛)𝐾𝑁)            (15) 

𝑅2 = (𝜆 − 𝐾𝑛)−1(Κ𝑁 − 𝐾𝜇)                        (16) 

However, since 

‖(𝛫 − 𝛫𝑛)‖ ≥ ‖(𝛫)‖ ↛ 0  𝑎𝑠  𝑛 → ∞. 

 (see [9]) ; we can't show 
‖(𝑅2)‖ → 0  𝑓𝑜𝑟  𝑁 ≥ 𝜇 𝑎𝑛𝑑   𝜇 → ∞. 

Instead, we will show 
sup
 𝑁≥𝜇

 ‖(𝑅2)2‖ → 0  𝑎𝑠   𝜇 → ∞              (17). 

Also, we can show that ‖(𝑅2)‖ is bounded and 

‖𝑅1‖ → 0  𝑎𝑠   𝑛 → ∞. These turn to be sufficient, 

since we can use (14) to write 

𝑥𝑁 − 𝑥𝑁
(𝑞+2)

= (𝑅1 + 𝑅2)2 (𝑥𝑁 − 𝑥𝑁
(𝑞)

) 

Then, 

‖𝑥𝑁 − 𝑥𝑁
(𝑞+2)

‖ ≤ ‖(𝑅1 + 𝑅2)2‖ ‖𝑥𝑁 − 𝑥𝑁
(𝑞)

‖ 

≤ (‖𝑅1‖2 + 2‖𝑅1‖‖𝑅2‖+‖(𝑅2)2‖ ) ‖𝑥𝑁

− 𝑥𝑁
(𝑞)

‖                            (18) 

To prove that ‖(𝑅1)‖ → 0  ; using (15) and Lemma 1 

we get 

‖𝑅1‖ ≤
1

|𝜆|
‖(𝜆 − 𝐾𝑛)−1‖(‖(𝐾 − 𝐾𝑛)𝐾𝑁‖

+ ‖(𝐾 − 𝐾𝜇)𝐾𝑁‖) 

≤
1

|𝜆|
𝐶2(𝜆)(𝑎𝑛 + 𝑎𝜇) ≤

1

|𝜆|
𝐶2(𝜆)(2𝑎𝑛), 𝜇 ≥ 𝑛. 

Since  𝑎𝑛 → 0  𝑎𝑠  𝑛 → ∞ and 𝑎𝜇 ≤ 𝑎𝑛 ,  hence, 
‖(𝑅1)‖ → 0  𝑎𝑠  𝑛 → ∞. 

To show (17), write 

‖(𝑅2)2‖ = ‖((𝜆 − 𝐾𝑛)−1(Κ𝑁 − 𝐾𝜇))
2

‖ 

                = ‖(𝜆 − 𝐾𝑛)−1‖ × 

‖(Κ𝑁 − 𝐾𝜇)(𝜆 − 𝐾𝑛)−1(Κ𝑁 − 𝐾𝜇)‖ 

≤ ‖(𝜆 − 𝐾𝑛)−1‖ × 

( ‖(K − Κ𝑁)(𝜆 − 𝐾𝑛)−1(Κ𝑁 − 𝐾𝜇)‖ 

 +‖(K − Κ𝜇)(𝜆 − 𝐾𝑛)−1(Κ𝑁 − 𝐾𝜇)‖) 

 

≤ ‖(𝜆 − 𝐾𝑛)−1‖ (‖(K − Κ𝑁)(𝜆 − 𝐾𝑛)−1Κ𝑁‖

+ ‖(K − Κ𝑁)(𝜆 − 𝐾𝑛)−1𝐾𝜇‖

+ ‖(𝐾 − 𝐾𝜇)(𝜆 − 𝐾𝑛)−1Κ𝑁‖

+ ‖(𝐾 − 𝐾𝜇)(𝜆 − 𝐾𝑛)−1𝐾𝜇‖) 

Using Lemma (1) we get 

‖(𝑅2)2‖ ≤ 𝐶2(𝜆) 
2(𝑎𝜇 + 𝑎𝑁)

|𝜆|
(1 + 𝐶1𝐶2(𝜆))

≤ 𝐶2(𝜆)  
4𝑎𝜇

|𝜆|
(1 + 𝐶1𝐶2(𝜆)) 

Since  𝑎𝑛 → 0  𝑎𝑠  𝑛 → ∞ and 𝑁 ≤ 𝑎𝜇 ≤ 𝑎𝑛,  hence, 

‖(𝑅2)2‖ → 0  𝑎𝑠  𝑛 → ∞. From (16) we get 

‖𝑅2‖ ≤ ‖(𝜆 − 𝐾𝑛)−1‖(‖Κ𝑁‖ + ‖𝐾𝜇‖) 

          ≤ 2𝐶1𝐶2(𝜆) 

Since ‖𝑅2‖ is bounded and 
‖(𝑅1)‖ → 0  𝑎𝑠  𝑛 → ∞, 

then     ‖(𝑅1)‖‖(𝑅2)‖ → 0  𝑎𝑠  𝑛 → ∞.  

This completes the proof. 

Based on (18), provided that 𝑛 is sufficiently large, 

there exists 
𝜀 = (‖𝑅1‖2 + 2‖𝑅1‖‖𝑅2‖+‖(𝑅2)2‖ ) 

= 𝜀(𝑛) < 1,   𝑠𝑜 𝑡ℎ𝑎𝑡 

‖𝑥𝑁 − 𝑥𝑁
(𝑞+2)

‖ ≤ 𝜀 ‖𝑥𝑁 − 𝑥𝑁
(𝑞)

‖ 

≤ ⋯ ≤ 𝜀0.5𝑞 𝜀‖𝑥𝑁 − 𝑥𝑁
(0)

‖ → 0  𝑎𝑠  𝑞 → ∞. 

2.3. IMPLEMENTATION 
 The following subsection outlines the 

implementation of the iterative scheme defined by 

(11). The linear system requiring solution is (5), with 

the unknown quantities being 
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𝑋𝑁 = (𝑋𝑁(𝑡𝑁,1), … , 𝑋𝑁(𝑡𝑁,𝑃𝑁
))

𝑇

 

Considering the iteration formula (12-11), suppose 

that {𝑥𝑁
(𝑞)

(𝑡𝑁,𝑖)} is known.  

First, calculate the residual 𝑟(𝑞) at 𝑡 ∈  {𝑡𝑛,𝑖} ∪ {𝑡𝑁,𝑖}: 

𝑟(𝑞)(𝑡) = 𝑦(𝑡) − 𝜆 𝑥𝑁
(𝑞)

(𝑡) 

+ ∑ 𝑤𝑁,𝑗𝑥𝑁
(𝑞)

(𝑡𝑁,𝑗)

𝑃𝑁

𝑗=1

𝑘(𝑡, 𝑡𝑁,𝑗)       (19) 

Second, determine𝐾𝜇  𝑟(𝑞) at the nodal points of both 

the coarse and fine mesh: 

𝐾𝜇  𝑟(𝑞)(𝑡) = ∑ 𝑤𝜇,𝑗

𝑃𝜇

𝑗=1

𝑟(𝑞)(𝑡𝜇,𝑗)𝑘(𝑡, 𝑡𝜇,𝑗) , 

   𝑡 ∈ {𝑡𝑛,𝑖} ∪ {𝑡𝑁,𝑖}      (20) 

Third, Compute the correction factor 𝛿𝑁
(𝑞)

 on the 

coarse mesh through the solution of the system.  

𝜆 𝛿𝑁
(𝑞)

(𝑡𝑛,𝑖) − ∑ 𝑤𝑛,𝑗

𝑃𝑛

𝑗=1

 𝑘(𝑡𝑛,𝑖 , 𝑡𝑛,𝑗) 𝛿𝑁
(𝑞)

(𝑡𝑛,𝑗) 

= 𝐾𝜇  𝑟(𝑞)(𝑡𝑛,𝑖), 𝑖 = 1,2, … , 𝑃𝑛          (21) 

Fourth, extending this correction to the fine mesh  

 𝛿𝑁
(𝑞)

(𝑡𝑁,𝑖) =
1

𝜆
[𝐾𝜇  𝑟(𝑞)(𝑡𝑁,𝑖) 

+ ∑ 𝑤𝑛,𝑗

𝑃𝑛

𝑗=1

𝛿𝑁
(𝑞)

(𝑡𝑛,𝑗) 𝑘(𝑡𝑁,𝑖, 𝑡𝑛,𝑗)],      

  𝑖 = 1,2, … , 𝑃𝑁               (22) 

Finally, define the new iterate 𝑥𝑁
(𝑞+1)

 on the fine 

mesh by 

𝑥𝑁
(𝑞+1)

(𝑡𝑁,𝑖) = 𝑥𝑁
(𝑞)

(𝑡𝑁,𝑖) 

        +
1

𝜆
 (𝑟(𝑞)(𝑡𝑁,𝑖) + 𝛿𝑁

(𝑞)
(𝑡𝑁,𝑖)), 

  𝑖 = 1,2, … , 𝑃𝑁                        (23) 

We stop the iteration when 

‖𝑥𝑁
(𝑞+1)

(𝑡𝑁,𝑖) − 𝑥𝑁
(𝑞)

(𝑡𝑁,𝑖)‖ 

=
1

|𝜆|
 ‖𝑟(𝑞)(𝑡𝑁,𝑖) + 𝛿𝑁

(𝑞)
(𝑡𝑁,𝑖)‖ ≤ 𝜎, 𝑖 = 1,2, … , 𝑃𝑁 

2.4. OPERATIONS COUNT 
 We will analyze arithmetic operations’ 

number required to compute a single iteration of 

(19-23). For this analysis, we assume that quantities 

like {𝑦(𝑡𝑁,𝑖)} and {𝑤𝑁,𝑗  𝑘(𝑡𝑁,𝑖 , 𝑡𝑁,𝑗)} are determined 

in advance and retained for later employment 

during the iterative steps. 

1. To compute the residuals{𝑟(𝑞)(𝑡𝑁,𝑖)}  and 

{𝑟(𝑞)(𝑡𝜇,𝑖)} of (19), approximately 2𝑃𝑁(𝑃𝑁 + 𝑃𝜇) 

arithmetic operations are needed (including 

additions, subtractions, multiplications, and 

divisions). 

2. Calculating {𝐾𝜇  𝑟(𝑞)(𝑡𝑁,𝑖)}  and {𝐾𝜇  𝑟(𝑞)(𝑡𝑛,𝑖)} of 

(20) requires approximately 2𝑃𝜇(𝑃𝑁 + 𝑃𝑛) arithmetic 

operations. 

3. To obtain the solution {𝛿𝑁
(𝑞)

(𝑡𝑛,𝑖)} from the linear 

system (21) necessitates approximately 2𝑃𝑛
2 number 

of arithmetic operations, provided that an LU 

decomposition of the linear system's matrix has 

been previously computed and stored. 

4. Calculating {𝛿𝑁
(𝑞)

(𝑡𝑁,𝑖)} with the Nyström 

interpolation formula (22) necessitates roughly 

2𝑃𝑁𝑃𝑛 arithmetic operations. 

5. The last step, (23), requires just 3𝑃𝑁 arithmetic 

operations.  

Combining these, we have approximately 

2𝑃𝑁
2 + 4𝑃𝜇𝑃𝑁 + 2𝑃𝑛𝑃𝑁 + 2𝑃𝜇𝑃𝑛 + 2𝑃𝑛

2 + 3𝑃𝑁 

arithmetic operations. The cost of a single iteration 

of the Atkinson-Brakhage's method was 

approximately [10] 

4𝑃𝑁
2 + 4𝑃𝑛𝑃𝑁 + 2𝑃𝑛

2 + 3𝑃𝑁 

Thus, for 𝑁 ≫ 𝜇 ≥ 𝑛 the proposed iteration method 

(12-11) is approximately half as costly as the 

Atkinson-Brakhage's method (6-8) per iteration. 

 

3. NUMERICAL COMPUTATION 
 This section demonstrates the theoretical 

convergence findings from the preceding section. 

The following example was used in [10] to illustrate 

the Atkinson Brakhage’s method. 

Example. Consider solving the equation 

𝜆𝑥 (𝑡) − ∫ 𝑘𝛾(𝑠 + 𝑡) 𝑥(𝑠) 𝑑𝑠

1

0

= 𝑦(𝑡),   

0 ≤ 𝑡 ≤ 1.       (24) 

with                   𝑘𝛾(𝜏) =
1 − 𝛾2

1 − 𝛾2 − 2𝛾 cos(2𝜋𝜏)

= 1 + 2 ∑ 𝛾𝑗 cos(2𝜋𝑗𝜏) 

∞

𝑗=1

 

and 0 ≤ 𝛾 < 1. The function 𝑦(𝑡) was so chosen that 

the true solution was 𝑥(𝑡) = 1.  

The eigenvalues and eigenfunctions for the 

corresponding integral operator (𝐾)  are 

𝛾𝑗 , cos(2𝜋𝑗𝑡) , 𝑗 =  0,1,2, … and −𝛾𝑗 , sin(2𝜋𝑗𝑡) , 𝑗 =

1,2, … 

The reformulation of the Dirichlet problem for 

Laplace's equation (∆𝑢 = 0) on an elliptical region 

within the plane yields this integral equation, as 

detailed in Kanwal ([11], p. 119). To define the 

numerical integration operator (𝐾𝑛), the midpoint 

rule [12] is utilized as the integration rule:  

∫ 𝑔(𝑠) 𝑑𝑠
1

 0
≈

1

𝑛
 ∑ 𝑔 (

2𝑗−1

2𝑛
) ,𝑛

𝑗=1 𝑔 𝜖 𝐶[0,1]  (25)  

In the following tables the initial guess is 𝑥𝑁
(0)

= 0, 

and the iterations was performed until 𝐸1 =

‖𝑥𝑁
(𝑞)

− 𝑥𝑁
(𝑞−1)

‖
∞

 was less than 10−13. The column It 

gives the number of iterates that were calculated, 

the column 𝐸2 gives the error ‖𝑥 − 𝑥𝑁
(𝑞)

‖
∞

in the .nal 
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computed iterate when compared with the true 

solution  

𝑥 = [𝑥(𝑡𝑁,1), 𝑥(𝑡𝑁,2), … , 𝑥(𝑡𝑁,𝑁)
𝑇

]; with 𝑥𝑁
(𝑞)

 denoting 

the final iterate. 

 As can be seen in Table 1, the iteration's 

convergence rate is enhanced by increasing the 

coarse mesh parameter 𝑛, with this rate being 

independent of 𝑁. Additionally, it is noteworthy 

that a mesh independence principle is in effect. That 

is, an increase in 𝑁 does not substantially alter the 

number of iterates needed to attain a specified 

decrease in the initial error. The results from the last 

three rows of this table and the subsequent table 

indicate that 𝑁 ≫ 𝜇 ≥ 𝑛 constitutes the most 

effective and economical parameter choice.  

 
Table 1. The effect of 𝒏, 𝝁; and 𝑵 on the convergence. 

𝒏 𝝁 𝑵 𝜸 𝝀 𝑬𝟏 𝑬𝟐 𝑰𝒕 

14 100 500 0.8 0.9 diverges diverges  

18 100 500 0.8 0.9 8.4E-14 2.2E-14 27 

36 100 500 0.8 0.9 7.7E-16 4.0E-15 08 

18 100 800 0.8 0.9 8.3E-14 2.5E-14 27 

18 16 500 0.8 0.9 diverges diverges  

18 20 500 0.8 0.9 9.0E-14 2.6E-14 29 

18 500 500 0.8 0.9 8.4E-14 2.2E-14 27 

 
Table 2. A comparison between the proposed technique and Atkinson-Brakhage technique 

     Atk.-Brakh. tech. Proposed tech. 

𝝀 𝜸 𝒏 𝑵 𝝉 𝑬𝟐 𝑰𝒕 𝝁 𝑬𝟐 𝑰𝒕 

0.999 0.8 32 5000 0.51 4.46E-07 30 48 4.47E-7 30 

0.001 0.5 16 500  diverges  16 2.95e-07 21 

2 0.5 2 3000  7.66E-015 100 4 6.66E-16 19 

5 0.95 8 800 0.1 diverges  16 6.88E-15 55 

 

Column 𝜏  gives   𝜏 = 

time of calculations of the proposed algorithm

time of calculations of Atkinson−Brakhage algorithm
  

 There are many observations to make when 
comparing the two methods.  

 First, from the first case, if the two methods have 
the same rate of convergence and 𝑁 ≫ 𝜇 ≥ 𝑛, the time 
consumed by the proposed technique equals 0.51 of 
the time consumed by Atkinson-Brakhage technique 
(this observation coincides with the results of the last 
subsection) 

 Second, when the value of 𝜆 (𝜆 = 0.999) tends 
to an eigenvalue, take 𝜇 > 𝑛. 

 Third, when the value of 𝜆  (𝜆 = 0.001)  tends to 
zero, the proposed technique converges and 
Atkinson-Brakhage technique diverges. In this case 
we must take 𝜇 = 𝑛. 

 Finally, from the third and fourth case, the 
proposed technique is much faster in its convergence 
than Atkinson-Brakhage technique and it gives a 
good convergence in some cases in which Atkinson-
Brakhage technique gives no convergence. 
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